Logo Search packages:      
Sourcecode: jackd2 version File versions  Download package

JackCoreAudioDriver.cpp

/*
Copyright (C) 2004-2008 Grame

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

*/

#include "JackCoreAudioDriver.h"
#include "JackEngineControl.h"
#include "JackMachThread.h"
#include "JackGraphManager.h"
#include "JackError.h"
#include "JackClientControl.h"
#include "JackDriverLoader.h"
#include "JackGlobals.h"
#include "JackTools.h"
#include "JackCompilerDeps.h"

#include <iostream>
#include <CoreServices/CoreServices.h>
#include <CoreFoundation/CFNumber.h>

namespace Jack
{

static void Print4CharCode(const char* msg, long c)
{
    UInt32 __4CC_number = (c);
    char __4CC_string[5];
    *((SInt32*)__4CC_string) = EndianU32_NtoB(__4CC_number);            
    __4CC_string[4] = 0;
    jack_log("%s'%s'", (msg), __4CC_string);
}

static void PrintStreamDesc(AudioStreamBasicDescription *inDesc)
{
    jack_log("- - - - - - - - - - - - - - - - - - - -");
    jack_log("  Sample Rate:%f", inDesc->mSampleRate);
    jack_log("  Format ID:%.*s", (int) sizeof(inDesc->mFormatID), (char*)&inDesc->mFormatID);
    jack_log("  Format Flags:%lX", inDesc->mFormatFlags);
    jack_log("  Bytes per Packet:%ld", inDesc->mBytesPerPacket);
    jack_log("  Frames per Packet:%ld", inDesc->mFramesPerPacket);
    jack_log("  Bytes per Frame:%ld", inDesc->mBytesPerFrame);
    jack_log("  Channels per Frame:%ld", inDesc->mChannelsPerFrame);
    jack_log("  Bits per Channel:%ld", inDesc->mBitsPerChannel);
    jack_log("- - - - - - - - - - - - - - - - - - - -\n");
}

static void printError(OSStatus err)
{
    switch (err) {
        case kAudioHardwareNoError:
            jack_log("error code : kAudioHardwareNoError");
            break;
        case kAudioConverterErr_FormatNotSupported:
            jack_log("error code : kAudioConverterErr_FormatNotSupported");
            break;
        case kAudioConverterErr_OperationNotSupported:
            jack_log("error code : kAudioConverterErr_OperationNotSupported");
            break;
        case kAudioConverterErr_PropertyNotSupported:
            jack_log("error code : kAudioConverterErr_PropertyNotSupported");
            break;
        case kAudioConverterErr_InvalidInputSize:
            jack_log("error code : kAudioConverterErr_InvalidInputSize");
            break;
        case kAudioConverterErr_InvalidOutputSize:
            jack_log("error code : kAudioConverterErr_InvalidOutputSize");
            break;
        case kAudioConverterErr_UnspecifiedError:
            jack_log("error code : kAudioConverterErr_UnspecifiedError");
            break;
        case kAudioConverterErr_BadPropertySizeError:
            jack_log("error code : kAudioConverterErr_BadPropertySizeError");
            break;
        case kAudioConverterErr_RequiresPacketDescriptionsError:
            jack_log("error code : kAudioConverterErr_RequiresPacketDescriptionsError");
            break;
        case kAudioConverterErr_InputSampleRateOutOfRange:
            jack_log("error code : kAudioConverterErr_InputSampleRateOutOfRange");
            break;
        case kAudioConverterErr_OutputSampleRateOutOfRange:
            jack_log("error code : kAudioConverterErr_OutputSampleRateOutOfRange");
            break;
        case kAudioHardwareNotRunningError:
            jack_log("error code : kAudioHardwareNotRunningError");
            break;
        case kAudioHardwareUnknownPropertyError:
            jack_log("error code : kAudioHardwareUnknownPropertyError");
            break;
        case kAudioHardwareIllegalOperationError:
            jack_log("error code : kAudioHardwareIllegalOperationError");
            break;
        case kAudioHardwareBadDeviceError:
            jack_log("error code : kAudioHardwareBadDeviceError");
            break;
        case kAudioHardwareBadStreamError:
            jack_log("error code : kAudioHardwareBadStreamError");
            break;
        case kAudioDeviceUnsupportedFormatError:
            jack_log("error code : kAudioDeviceUnsupportedFormatError");
            break;
        case kAudioDevicePermissionsError:
            jack_log("error code : kAudioDevicePermissionsError");
            break;
        case kAudioHardwareBadObjectError:
            jack_log("error code : kAudioHardwareBadObjectError");
            break;
        case kAudioHardwareUnsupportedOperationError:
            jack_log("error code : kAudioHardwareUnsupportedOperationError");
            break;
        default:
            Print4CharCode("error code : unknown", err);
            break;
    }
}

static OSStatus DisplayDeviceNames()
{
    UInt32 size;
    Boolean isWritable;
    int i, deviceNum;
    OSStatus err;
    CFStringRef UIname;

    err = AudioHardwareGetPropertyInfo(kAudioHardwarePropertyDevices, &size, &isWritable);
    if (err != noErr)
        return err;

    deviceNum = size / sizeof(AudioDeviceID);
    AudioDeviceID devices[deviceNum];

    err = AudioHardwareGetProperty(kAudioHardwarePropertyDevices, &size, devices);
    if (err != noErr)
        return err;

    for (i = 0; i < deviceNum; i++) {
        char device_name[256];
        char internal_name[256];

        size = sizeof(CFStringRef);
        UIname = NULL;
        err = AudioDeviceGetProperty(devices[i], 0, false, kAudioDevicePropertyDeviceUID, &size, &UIname);
        if (err == noErr) {
            CFStringGetCString(UIname, internal_name, 256, CFStringGetSystemEncoding());
        } else {
            goto error;
        }

        size = 256;
        err = AudioDeviceGetProperty(devices[i], 0, false, kAudioDevicePropertyDeviceName, &size, device_name);
        if (err != noErr)
            return err;

        jack_info("Device name = \'%s\', internal_name = \'%s\' (to be used as -C, -P, or -d parameter)", device_name, internal_name);
    }

    return noErr;

error:
    if (UIname != NULL)
        CFRelease(UIname);
    return err;
}

static CFStringRef GetDeviceName(AudioDeviceID id)
{
    UInt32 size = sizeof(CFStringRef);
    CFStringRef UIname;
    OSStatus err = AudioDeviceGetProperty(id, 0, false, kAudioDevicePropertyDeviceUID, &size, &UIname);
    return (err == noErr) ? UIname : NULL;
}

OSStatus JackCoreAudioDriver::Render(void *inRefCon,
                                     AudioUnitRenderActionFlags *ioActionFlags,
                                     const AudioTimeStamp *inTimeStamp,
                                     UInt32 inBusNumber,
                                     UInt32 inNumberFrames,
                                     AudioBufferList *ioData)
{
    JackCoreAudioDriver* driver = (JackCoreAudioDriver*)inRefCon;
    driver->fActionFags = ioActionFlags;
    driver->fCurrentTime = (AudioTimeStamp *)inTimeStamp;
    driver->fDriverOutputData = ioData;
    
    // Setup threadded based log function once...
    if (set_threaded_log_function()) {
        
        jack_log("set_threaded_log_function");
        JackMachThread::GetParams(pthread_self(), &driver->fEngineControl->fPeriod, &driver->fEngineControl->fComputation, &driver->fEngineControl->fConstraint);
        
        if (driver->fComputationGrain > 0) {
            jack_log("JackCoreAudioDriver::Render : RT thread computation setup to %d percent of period", int(driver->fComputationGrain * 100));
            driver->fEngineControl->fComputation = driver->fEngineControl->fPeriod * driver->fComputationGrain;
        }
        
        // Signal waiting start function...
        driver->fState = true;
    }
    
    driver->CycleTakeBeginTime();
    return driver->Process();
}

int JackCoreAudioDriver::Read()
{
    AudioUnitRender(fAUHAL, fActionFags, fCurrentTime, 1, fEngineControl->fBufferSize, fJackInputData);
    return 0;
}

int JackCoreAudioDriver::Write()
{
    for (int i = 0; i < fPlaybackChannels; i++) {
        if (fGraphManager->GetConnectionsNum(fPlaybackPortList[i]) > 0) {
            float* buffer = GetOutputBuffer(i);
            int size = sizeof(float) * fEngineControl->fBufferSize;
            memcpy((float*)fDriverOutputData->mBuffers[i].mData, buffer, size);
            // Monitor ports
            if (fWithMonitorPorts && fGraphManager->GetConnectionsNum(fMonitorPortList[i]) > 0)
                memcpy(GetMonitorBuffer(i), buffer, size);
        } else {
            memset((float*)fDriverOutputData->mBuffers[i].mData, 0, sizeof(float) * fEngineControl->fBufferSize);
        }
    }
    return 0;
}


OSStatus JackCoreAudioDriver::SRNotificationCallback(AudioDeviceID inDevice,
                                                    UInt32 inChannel,
                                                    Boolean isInput,
                                                    AudioDevicePropertyID inPropertyID,
                                                    void* inClientData)
{
    JackCoreAudioDriver* driver = (JackCoreAudioDriver*)inClientData;

    switch (inPropertyID) {

        case kAudioDevicePropertyNominalSampleRate: {
            jack_log("JackCoreAudioDriver::SRNotificationCallback kAudioDevicePropertyNominalSampleRate");
            driver->fState = true;
            // Check new sample rate
            Float64 sampleRate;
            UInt32 outSize =  sizeof(Float64);
            OSStatus err = AudioDeviceGetProperty(inDevice, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, &outSize, &sampleRate);
            if (err != noErr) {
                jack_error("Cannot get current sample rate");
                printError(err);
            } else {
                jack_log("SRNotificationCallback : checked sample rate = %f", sampleRate);
            }
            break;
        }
    }

    return noErr;
}

// A better implementation would possibly try to recover in case of hardware device change (see HALLAB HLFilePlayerWindowControllerAudioDevicePropertyListenerProc code)
OSStatus JackCoreAudioDriver::DeviceNotificationCallback(AudioDeviceID inDevice,
                                                        UInt32 inChannel,
                                                        Boolean   isInput,
                                                        AudioDevicePropertyID inPropertyID,
                                                        void* inClientData)
{
    JackCoreAudioDriver* driver = (JackCoreAudioDriver*)inClientData;
         
    switch (inPropertyID) {
            
        case kAudioDevicePropertyDeviceIsRunning: {
            UInt32 isrunning = 0;
            UInt32 outsize = sizeof(UInt32);
            if (AudioDeviceGetProperty(driver->fDeviceID, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyDeviceIsRunning, &outsize, &isrunning) == noErr) {
                jack_log("JackCoreAudioDriver::DeviceNotificationCallback kAudioDevicePropertyDeviceIsRunning = %d", isrunning);
            }
            break;
        }
        
        case kAudioDeviceProcessorOverload: {
            jack_error("JackCoreAudioDriver::DeviceNotificationCallback kAudioDeviceProcessorOverload");
            jack_time_t cur_time = GetMicroSeconds();
            driver->NotifyXRun(cur_time, float(cur_time - driver->fBeginDateUst));   // Better this value than nothing... 
            break;
        }
        
        case kAudioDevicePropertyStreamConfiguration: {
            jack_error("Cannot handle kAudioDevicePropertyStreamConfiguration : server will quit...");
            driver->NotifyFailure(JackBackendError, "Another application has changed the device configuration.");   // Message length limited to JACK_MESSAGE_SIZE
            driver->CloseAUHAL();
            kill(JackTools::GetPID(), SIGINT);
            return kAudioHardwareUnsupportedOperationError;
        }
        
        case kAudioDevicePropertyNominalSampleRate: {
            Float64 sampleRate = 0;
            UInt32 outsize = sizeof(Float64);
            OSStatus err = AudioDeviceGetProperty(driver->fDeviceID, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, &outsize, &sampleRate);
            if (err != noErr)
                return kAudioHardwareUnsupportedOperationError;
            
            char device_name[256];
            const char* digidesign_name = "Digidesign";
            driver->GetDeviceNameFromID(driver->fDeviceID, device_name);
        
            if (sampleRate != driver->fEngineControl->fSampleRate) {
               
               // Digidesign hardware, so "special" code : change the SR again here
               if (strncmp(device_name, digidesign_name, sizeof(digidesign_name)) == 0) {
                   
                    jack_log("Digidesign HW = %s", device_name);
                
                    // Set sample rate again...
                    sampleRate = driver->fEngineControl->fSampleRate;
                    err = AudioDeviceSetProperty(driver->fDeviceID, NULL, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, outsize, &sampleRate);
                    if (err != noErr) {
                        jack_error("Cannot set sample rate = %f", sampleRate);
                        printError(err);
                    } else {
                        jack_log("Set sample rate = %f", sampleRate);
                    }
                    
                    // Check new sample rate again...
                    outsize = sizeof(Float64);
                    err = AudioDeviceGetProperty(inDevice, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, &outsize, &sampleRate);
                    if (err != noErr) {
                        jack_error("Cannot get current sample rate");
                        printError(err);
                    } else {
                        jack_log("Checked sample rate = %f", sampleRate);
                    }
                    return noErr;
                    
                } else {
                    driver->NotifyFailure(JackBackendError, "Another application has changed the sample rate.");    // Message length limited to JACK_MESSAGE_SIZE
                    driver->CloseAUHAL();
                    kill(JackTools::GetPID(), SIGINT);
                    return kAudioHardwareUnsupportedOperationError;
                }
            }
        }
            
    }
    return noErr;
}

OSStatus JackCoreAudioDriver::GetDeviceIDFromUID(const char* UID, AudioDeviceID* id)
{
    UInt32 size = sizeof(AudioValueTranslation);
    CFStringRef inIUD = CFStringCreateWithCString(NULL, UID, CFStringGetSystemEncoding());
    AudioValueTranslation value = { &inIUD, sizeof(CFStringRef), id, sizeof(AudioDeviceID) };

    if (inIUD == NULL) {
        return kAudioHardwareUnspecifiedError;
    } else {
        OSStatus res = AudioHardwareGetProperty(kAudioHardwarePropertyDeviceForUID, &size, &value);
        CFRelease(inIUD);
        jack_log("GetDeviceIDFromUID %s %ld", UID, *id);
        return (*id == kAudioDeviceUnknown) ? kAudioHardwareBadDeviceError : res;
    }
}

OSStatus JackCoreAudioDriver::GetDefaultDevice(AudioDeviceID* id)
{
    OSStatus res;
    UInt32 theSize = sizeof(UInt32);
    AudioDeviceID inDefault;
    AudioDeviceID outDefault;

    if ((res = AudioHardwareGetProperty(kAudioHardwarePropertyDefaultInputDevice, &theSize, &inDefault)) != noErr)
        return res;

    if ((res = AudioHardwareGetProperty(kAudioHardwarePropertyDefaultOutputDevice, &theSize, &outDefault)) != noErr)
        return res;

    jack_log("GetDefaultDevice: input = %ld output = %ld", inDefault, outDefault);

    // Get the device only if default input and output are the same
    if (inDefault == outDefault) {
        *id = inDefault;
        return noErr;
    } else {
        jack_error("Default input and output devices are not the same !!");
        return kAudioHardwareBadDeviceError;
    }
}

OSStatus JackCoreAudioDriver::GetDefaultInputDevice(AudioDeviceID* id)
{
    OSStatus res;
    UInt32 theSize = sizeof(UInt32);
    AudioDeviceID inDefault;

    if ((res = AudioHardwareGetProperty(kAudioHardwarePropertyDefaultInputDevice, &theSize, &inDefault)) != noErr)
        return res;

    jack_log("GetDefaultInputDevice: input = %ld ", inDefault);
    *id = inDefault;
    return noErr;
}

OSStatus JackCoreAudioDriver::GetDefaultOutputDevice(AudioDeviceID* id)
{
    OSStatus res;
    UInt32 theSize = sizeof(UInt32);
    AudioDeviceID outDefault;

    if ((res = AudioHardwareGetProperty(kAudioHardwarePropertyDefaultOutputDevice, &theSize, &outDefault)) != noErr)
        return res;

    jack_log("GetDefaultOutputDevice: output = %ld", outDefault);
    *id = outDefault;
    return noErr;
}

OSStatus JackCoreAudioDriver::GetDeviceNameFromID(AudioDeviceID id, char* name)
{
    UInt32 size = 256;
    return AudioDeviceGetProperty(id, 0, false, kAudioDevicePropertyDeviceName, &size, name);
}

OSStatus JackCoreAudioDriver::GetTotalChannels(AudioDeviceID device, int& channelCount, bool isInput)
{
    OSStatus err = noErr;
    UInt32  outSize;
    Boolean outWritable;
 
    channelCount = 0;
    err = AudioDeviceGetPropertyInfo(device, 0, isInput, kAudioDevicePropertyStreamConfiguration, &outSize, &outWritable);
    if (err == noErr) {
        AudioBufferList bufferList[outSize];
        err = AudioDeviceGetProperty(device, 0, isInput, kAudioDevicePropertyStreamConfiguration, &outSize, bufferList);
        if (err == noErr) {
            for (unsigned int i = 0; i < bufferList->mNumberBuffers; i++)
                channelCount += bufferList->mBuffers[i].mNumberChannels;
        }
    }
    return err;
}

JackCoreAudioDriver::JackCoreAudioDriver(const char* name, const char* alias, JackLockedEngine* engine, JackSynchro* table)
        : JackAudioDriver(name, alias, engine, table), 
        fJackInputData(NULL), 
        fDriverOutputData(NULL), 
        fPluginID(0), 
        fState(false), 
        fHogged(false),
        fIOUsage(1.f),
        fComputationGrain(-1.f),
        fClockDriftCompensate(false)
{}

JackCoreAudioDriver::~JackCoreAudioDriver()
{}

OSStatus JackCoreAudioDriver::DestroyAggregateDevice() 
{
    OSStatus osErr = noErr;
    AudioObjectPropertyAddress pluginAOPA;
    pluginAOPA.mSelector = kAudioPlugInDestroyAggregateDevice;
    pluginAOPA.mScope = kAudioObjectPropertyScopeGlobal;
    pluginAOPA.mElement = kAudioObjectPropertyElementMaster;
    UInt32 outDataSize;
     
    if (fPluginID > 0)   {
      
        osErr = AudioObjectGetPropertyDataSize(fPluginID, &pluginAOPA, 0, NULL, &outDataSize);
        if (osErr != noErr) {
            jack_error("JackCoreAudioDriver::DestroyAggregateDevice : AudioObjectGetPropertyDataSize error");
            printError(osErr);
            return osErr;
        }
            
        osErr = AudioObjectGetPropertyData(fPluginID, &pluginAOPA, 0, NULL, &outDataSize, &fDeviceID);
        if (osErr != noErr) {
            jack_error("JackCoreAudioDriver::DestroyAggregateDevice : AudioObjectGetPropertyData error");
            printError(osErr);
            return osErr;
        }
        
    }
    
    return noErr;
}
    
OSStatus JackCoreAudioDriver::CreateAggregateDevice(AudioDeviceID captureDeviceID, AudioDeviceID playbackDeviceID, jack_nframes_t samplerate, AudioDeviceID* outAggregateDevice) 
{
    OSStatus err = noErr;
    AudioObjectID sub_device[32];
    UInt32 outSize = sizeof(sub_device);
    
    err = AudioDeviceGetProperty(captureDeviceID, 0, kAudioDeviceSectionGlobal, kAudioAggregateDevicePropertyActiveSubDeviceList, &outSize, sub_device);
    vector<AudioDeviceID> captureDeviceIDArray;
    
    if (err != noErr) {
        jack_log("Input device does not have subdevices");
        captureDeviceIDArray.push_back(captureDeviceID);
    } else {
        int num_devices = outSize / sizeof(AudioObjectID);
        jack_log("Input device has %d subdevices", num_devices);
        for (int i = 0; i < num_devices; i++) {
            captureDeviceIDArray.push_back(sub_device[i]);
        }
    }
    
    err = AudioDeviceGetProperty(playbackDeviceID, 0, kAudioDeviceSectionGlobal, kAudioAggregateDevicePropertyActiveSubDeviceList, &outSize, sub_device);    
    vector<AudioDeviceID> playbackDeviceIDArray;
    
    if (err != noErr) {
        jack_log("Output device does not have subdevices");
        playbackDeviceIDArray.push_back(playbackDeviceID);
    } else {
        int num_devices = outSize / sizeof(AudioObjectID);
        jack_log("Output device has %d subdevices", num_devices);
        for (int i = 0; i < num_devices; i++) {
            playbackDeviceIDArray.push_back(sub_device[i]);
        }
    }
    
    return CreateAggregateDeviceAux(captureDeviceIDArray, playbackDeviceIDArray, samplerate, outAggregateDevice);
}

OSStatus JackCoreAudioDriver::CreateAggregateDeviceAux(vector<AudioDeviceID> captureDeviceID, vector<AudioDeviceID> playbackDeviceID, jack_nframes_t samplerate, AudioDeviceID* outAggregateDevice) 
{
    OSStatus osErr = noErr;
    UInt32 outSize;
    Boolean outWritable;
    
    // Prepare sub-devices for clock drift compensation
    // Workaround for bug in the HAL : until 10.6.2
    AudioObjectPropertyAddress theAddressOwned = { kAudioObjectPropertyOwnedObjects, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
    AudioObjectPropertyAddress theAddressDrift = { kAudioSubDevicePropertyDriftCompensation, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
    UInt32 theQualifierDataSize = sizeof(AudioObjectID);
    AudioClassID inClass = kAudioSubDeviceClassID;
    void* theQualifierData = &inClass;
    UInt32 subDevicesNum = 0;
     
    //---------------------------------------------------------------------------
    // Setup SR of both devices otherwise creating AD may fail...
    //---------------------------------------------------------------------------
    UInt32 keptclockdomain = 0;
    UInt32 clockdomain = 0;
    outSize = sizeof(UInt32);
    bool need_clock_drift_compensation = false;
    
    for (UInt32 i = 0; i < captureDeviceID.size(); i++) {
        if (SetupSampleRateAux(captureDeviceID[i], samplerate) < 0) {
            jack_error("JackCoreAudioDriver::CreateAggregateDevice : cannot set SR of input device");
        } else  {
            // Check clock domain
            osErr = AudioDeviceGetProperty(captureDeviceID[i], 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyClockDomain, &outSize, &clockdomain); 
            if (osErr != 0) {
                jack_error("JackCoreAudioDriver::CreateAggregateDevice : kAudioDevicePropertyClockDomain error");
                printError(osErr);
            } else {
                keptclockdomain = (keptclockdomain == 0) ? clockdomain : keptclockdomain; 
                jack_log("JackCoreAudioDriver::CreateAggregateDevice : input clockdomain = %d", clockdomain);
                if (clockdomain != 0 && clockdomain != keptclockdomain) {
                    jack_error("JackCoreAudioDriver::CreateAggregateDevice : devices do not share the same clock!! clock drift compensation would be needed...");
                    need_clock_drift_compensation = true;
                }
            }
        }
    }
    
    for (UInt32 i = 0; i < playbackDeviceID.size(); i++) {
        if (SetupSampleRateAux(playbackDeviceID[i], samplerate) < 0) {
            jack_error("JackCoreAudioDriver::CreateAggregateDevice : cannot set SR of output device");
        } else {
            // Check clock domain
            osErr = AudioDeviceGetProperty(playbackDeviceID[i], 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyClockDomain, &outSize, &clockdomain); 
            if (osErr != 0) {
                jack_error("JackCoreAudioDriver::CreateAggregateDevice : kAudioDevicePropertyClockDomain error");
                printError(osErr);
            } else {
                keptclockdomain = (keptclockdomain == 0) ? clockdomain : keptclockdomain; 
                jack_log("JackCoreAudioDriver::CreateAggregateDevice : output clockdomain = %d", clockdomain);
                if (clockdomain != 0 && clockdomain != keptclockdomain) {
                    jack_error("JackCoreAudioDriver::CreateAggregateDevice : devices do not share the same clock!! clock drift compensation would be needed...");
                    need_clock_drift_compensation = true;
                }
            }
        }
    }
    
    // If no valid clock domain was found, then assume we have to compensate...
    if (keptclockdomain == 0) {
        need_clock_drift_compensation = true;
    }

    //---------------------------------------------------------------------------
    // Start to create a new aggregate by getting the base audio hardware plugin
    //---------------------------------------------------------------------------
    
    char device_name[256];
    for (UInt32 i = 0; i < captureDeviceID.size(); i++) {
        GetDeviceNameFromID(captureDeviceID[i], device_name);
        jack_info("Separated input = '%s' ", device_name);
    }
    
    for (UInt32 i = 0; i < playbackDeviceID.size(); i++) {
        GetDeviceNameFromID(playbackDeviceID[i], device_name);
        jack_info("Separated output = '%s' ", device_name);
    }
   
    osErr = AudioHardwareGetPropertyInfo(kAudioHardwarePropertyPlugInForBundleID, &outSize, &outWritable);
    if (osErr != noErr) {
        jack_error("JackCoreAudioDriver::CreateAggregateDevice : AudioHardwareGetPropertyInfo kAudioHardwarePropertyPlugInForBundleID error");
        printError(osErr);
        return osErr;
    }

    AudioValueTranslation pluginAVT;

    CFStringRef inBundleRef = CFSTR("com.apple.audio.CoreAudio");
   
    pluginAVT.mInputData = &inBundleRef;
    pluginAVT.mInputDataSize = sizeof(inBundleRef);
    pluginAVT.mOutputData = &fPluginID;
    pluginAVT.mOutputDataSize = sizeof(fPluginID);

    osErr = AudioHardwareGetProperty(kAudioHardwarePropertyPlugInForBundleID, &outSize, &pluginAVT);
    if (osErr != noErr) {
        jack_error("JackCoreAudioDriver::CreateAggregateDevice : AudioHardwareGetProperty kAudioHardwarePropertyPlugInForBundleID error");
        printError(osErr);
        return osErr;
    }

    //-------------------------------------------------
    // Create a CFDictionary for our aggregate device
    //-------------------------------------------------

    CFMutableDictionaryRef aggDeviceDict = CFDictionaryCreateMutable(NULL, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);

    CFStringRef AggregateDeviceNameRef = CFSTR("JackDuplex");
    CFStringRef AggregateDeviceUIDRef = CFSTR("com.grame.JackDuplex");
    
    // add the name of the device to the dictionary
    CFDictionaryAddValue(aggDeviceDict, CFSTR(kAudioAggregateDeviceNameKey), AggregateDeviceNameRef);

    // add our choice of UID for the aggregate device to the dictionary
    CFDictionaryAddValue(aggDeviceDict, CFSTR(kAudioAggregateDeviceUIDKey), AggregateDeviceUIDRef);
    
    // add a "private aggregate key" to the dictionary
    int value = 1;
    CFNumberRef AggregateDeviceNumberRef = CFNumberCreate(NULL, kCFNumberIntType, &value);
    
    SInt32 system;
    Gestalt(gestaltSystemVersion, &system);
     
    jack_log("JackCoreAudioDriver::CreateAggregateDevice : system version = %x limit = %x", system, 0x00001054);
    
    // Starting with 10.5.4 systems, the AD can be internal... (better)
    if (system < 0x00001054) {
        jack_log("JackCoreAudioDriver::CreateAggregateDevice : public aggregate device....");
    } else {
        jack_log("JackCoreAudioDriver::CreateAggregateDevice : private aggregate device....");
        CFDictionaryAddValue(aggDeviceDict, CFSTR(kAudioAggregateDeviceIsPrivateKey), AggregateDeviceNumberRef);
    }
    
    // Prepare sub-devices for clock drift compensation
    CFMutableArrayRef subDevicesArrayClock = NULL;
    
    /*
    if (fClockDriftCompensate) {
        if (need_clock_drift_compensation) {
            jack_info("Clock drift compensation activated...");
            subDevicesArrayClock = CFArrayCreateMutable(NULL, 0, &kCFTypeArrayCallBacks);
            
            for (UInt32 i = 0; i < captureDeviceID.size(); i++) {
                CFStringRef UID = GetDeviceName(captureDeviceID[i]);
                if (UID) {
                    CFMutableDictionaryRef subdeviceAggDeviceDict = CFDictionaryCreateMutable(NULL, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
                    CFDictionaryAddValue(subdeviceAggDeviceDict, CFSTR(kAudioSubDeviceUIDKey), UID);
                    CFDictionaryAddValue(subdeviceAggDeviceDict, CFSTR(kAudioSubDeviceDriftCompensationKey), AggregateDeviceNumberRef);
                    //CFRelease(UID);
                    CFArrayAppendValue(subDevicesArrayClock, subdeviceAggDeviceDict);
                }
            }
            
            for (UInt32 i = 0; i < playbackDeviceID.size(); i++) {
                CFStringRef UID = GetDeviceName(playbackDeviceID[i]);
                if (UID) {
                    CFMutableDictionaryRef subdeviceAggDeviceDict = CFDictionaryCreateMutable(NULL, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
                    CFDictionaryAddValue(subdeviceAggDeviceDict, CFSTR(kAudioSubDeviceUIDKey), UID);
                    CFDictionaryAddValue(subdeviceAggDeviceDict, CFSTR(kAudioSubDeviceDriftCompensationKey), AggregateDeviceNumberRef);
                    //CFRelease(UID);
                    CFArrayAppendValue(subDevicesArrayClock, subdeviceAggDeviceDict);
                }
            }
            
            // add sub-device clock array for the aggregate device to the dictionary
            CFDictionaryAddValue(aggDeviceDict, CFSTR(kAudioAggregateDeviceSubDeviceListKey), subDevicesArrayClock);
        } else {
            jack_info("Clock drift compensation was asked but is not needed (devices use the same clock domain)");
        }
    }
    */
    
    //-------------------------------------------------
    // Create a CFMutableArray for our sub-device list
    //-------------------------------------------------
    
    // we need to append the UID for each device to a CFMutableArray, so create one here
    CFMutableArrayRef subDevicesArray = CFArrayCreateMutable(NULL, 0, &kCFTypeArrayCallBacks);
    
    vector<CFStringRef> captureDeviceUID;
    for (UInt32 i = 0; i < captureDeviceID.size(); i++) {
        CFStringRef ref = GetDeviceName(captureDeviceID[i]);
        if (ref == NULL)
            return -1;
        captureDeviceUID.push_back(ref);
        // input sub-devices in this example, so append the sub-device's UID to the CFArray
        CFArrayAppendValue(subDevicesArray, ref);
   }
    
    vector<CFStringRef> playbackDeviceUID;
    for (UInt32 i = 0; i < playbackDeviceID.size(); i++) {
        CFStringRef ref = GetDeviceName(playbackDeviceID[i]);
        if (ref == NULL)
            return -1;
        playbackDeviceUID.push_back(ref);
        // output sub-devices in this example, so append the sub-device's UID to the CFArray
        CFArrayAppendValue(subDevicesArray, ref);
    }
  
    //-----------------------------------------------------------------------
    // Feed the dictionary to the plugin, to create a blank aggregate device
    //-----------------------------------------------------------------------
 
    AudioObjectPropertyAddress pluginAOPA;
    pluginAOPA.mSelector = kAudioPlugInCreateAggregateDevice;
    pluginAOPA.mScope = kAudioObjectPropertyScopeGlobal;
    pluginAOPA.mElement = kAudioObjectPropertyElementMaster;
    UInt32 outDataSize;

    osErr = AudioObjectGetPropertyDataSize(fPluginID, &pluginAOPA, 0, NULL, &outDataSize);
    if (osErr != noErr) {
        jack_error("JackCoreAudioDriver::CreateAggregateDevice : AudioObjectGetPropertyDataSize error");
        printError(osErr);
        goto error;
    }
    
    osErr = AudioObjectGetPropertyData(fPluginID, &pluginAOPA, sizeof(aggDeviceDict), &aggDeviceDict, &outDataSize, outAggregateDevice);
    if (osErr != noErr) {
        jack_error("JackCoreAudioDriver::CreateAggregateDevice : AudioObjectGetPropertyData error");
        printError(osErr);
        goto error;
    }

    // pause for a bit to make sure that everything completed correctly
    // this is to work around a bug in the HAL where a new aggregate device seems to disappear briefly after it is created
    CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0.1, false);

    //-------------------------
    // Set the sub-device list
    //-------------------------

    pluginAOPA.mSelector = kAudioAggregateDevicePropertyFullSubDeviceList;
    pluginAOPA.mScope = kAudioObjectPropertyScopeGlobal;
    pluginAOPA.mElement = kAudioObjectPropertyElementMaster;
    outDataSize = sizeof(CFMutableArrayRef);
    osErr = AudioObjectSetPropertyData(*outAggregateDevice, &pluginAOPA, 0, NULL, outDataSize, &subDevicesArray);
    if (osErr != noErr) {
        jack_error("JackCoreAudioDriver::CreateAggregateDevice : AudioObjectSetPropertyData for sub-device list error");
        printError(osErr);
        goto error;
    }
    
    // pause again to give the changes time to take effect
    CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0.1, false);
    
    //-----------------------
    // Set the master device
    //-----------------------

    // set the master device manually (this is the device which will act as the master clock for the aggregate device)
    // pass in the UID of the device you want to use
    pluginAOPA.mSelector = kAudioAggregateDevicePropertyMasterSubDevice;
    pluginAOPA.mScope = kAudioObjectPropertyScopeGlobal;
    pluginAOPA.mElement = kAudioObjectPropertyElementMaster;
    outDataSize = sizeof(CFStringRef);
    osErr = AudioObjectSetPropertyData(*outAggregateDevice, &pluginAOPA, 0, NULL, outDataSize, &captureDeviceUID[0]);  // First apture is master...
    if (osErr != noErr) {
        jack_error("JackCoreAudioDriver::CreateAggregateDevice : AudioObjectSetPropertyData for master device error");
        printError(osErr);
        goto error;
    }
    
    // pause again to give the changes time to take effect
    CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0.1, false);
  
    // Prepare sub-devices for clock drift compensation
    // Workaround for bug in the HAL : until 10.6.2
    
    if (fClockDriftCompensate) {
        if (need_clock_drift_compensation) {
            jack_info("Clock drift compensation activated...");
       
            // Get the property data size
            osErr = AudioObjectGetPropertyDataSize(*outAggregateDevice, &theAddressOwned, theQualifierDataSize, theQualifierData, &outSize);
            if (osErr != noErr) {
                jack_error("JackCoreAudioDriver::CreateAggregateDevice kAudioObjectPropertyOwnedObjects error");
                printError(osErr);
            }
            
            //    Calculate the number of object IDs
            subDevicesNum = outSize / sizeof(AudioObjectID);
            jack_info("JackCoreAudioDriver::CreateAggregateDevice clock drift compensation, number of sub-devices = %d", subDevicesNum);
            AudioObjectID subDevices[subDevicesNum];
            outSize = sizeof(subDevices);
            
            osErr = AudioObjectGetPropertyData(*outAggregateDevice, &theAddressOwned, theQualifierDataSize, theQualifierData, &outSize, subDevices);
            if (osErr != noErr) {
                jack_error("JackCoreAudioDriver::CreateAggregateDevice kAudioObjectPropertyOwnedObjects error");
                printError(osErr);
            }
            
            // Set kAudioSubDevicePropertyDriftCompensation property...
            for (UInt32 index = 0; index < subDevicesNum; ++index) {
                UInt32 theDriftCompensationValue = 1;
                osErr = AudioObjectSetPropertyData(subDevices[index], &theAddressDrift, 0, NULL, sizeof(UInt32), &theDriftCompensationValue);
                if (osErr != noErr) {
                    jack_error("JackCoreAudioDriver::CreateAggregateDevice kAudioSubDevicePropertyDriftCompensation error");
                    printError(osErr);
                }
            }
        } else {
            jack_info("Clock drift compensation was asked but is not needed (devices use the same clock domain)");
        }
    }    
    
    // pause again to give the changes time to take effect
    CFRunLoopRunInMode(kCFRunLoopDefaultMode, 0.1, false);
       
    //----------
    // Clean up
    //----------
    
    // release the private AD key
    CFRelease(AggregateDeviceNumberRef);

    // release the CF objects we have created - we don't need them any more
    CFRelease(aggDeviceDict);
    CFRelease(subDevicesArray);
    
    if (subDevicesArrayClock)
        CFRelease(subDevicesArrayClock);

    // release the device UID
    for (UInt32 i = 0; i < captureDeviceUID.size(); i++) {
        CFRelease(captureDeviceUID[i]);
    }
    
    for (UInt32 i = 0; i < playbackDeviceUID.size(); i++) {
        CFRelease(playbackDeviceUID[i]);
    }
    
    jack_log("New aggregate device %ld", *outAggregateDevice);
    return noErr;
    
error:
    DestroyAggregateDevice();
    return -1;
}

int JackCoreAudioDriver::SetupDevices(const char* capture_driver_uid, 
                                      const char* playback_driver_uid, 
                                      char* capture_driver_name, 
                                      char* playback_driver_name, 
                                      jack_nframes_t samplerate)
{
    capture_driver_name[0] = 0;
    playback_driver_name[0] = 0;
   
    // Duplex
    if (strcmp(capture_driver_uid, "") != 0 && strcmp(playback_driver_uid, "") != 0) {
        jack_log("JackCoreAudioDriver::Open duplex");
          
        // Same device for capture and playback...
        if (strcmp(capture_driver_uid, playback_driver_uid) == 0)  {
            
            if (GetDeviceIDFromUID(playback_driver_uid, &fDeviceID) != noErr) {
                jack_log("Will take default in/out");
                if (GetDefaultDevice(&fDeviceID) != noErr) {
                    jack_error("Cannot open default device");
                    return -1;
                }
            }
            if (GetDeviceNameFromID(fDeviceID, capture_driver_name) != noErr || GetDeviceNameFromID(fDeviceID, playback_driver_name) != noErr) {
                jack_error("Cannot get device name from device ID");
                return -1;
            }
            
        } else {
        
            // Creates aggregate device
            AudioDeviceID captureID, playbackID;
            
            if (GetDeviceIDFromUID(capture_driver_uid, &captureID) != noErr) {
                jack_log("Will take default input");
                if (GetDefaultInputDevice(&captureID) != noErr) {
                    jack_error("Cannot open default input device");
                    return -1;
                }
            }

            if (GetDeviceIDFromUID(playback_driver_uid, &playbackID) != noErr) {
                jack_log("Will take default output");
                if (GetDefaultOutputDevice(&playbackID) != noErr) {
                    jack_error("Cannot open default output device");
                    return -1;
                }
            }

            if (CreateAggregateDevice(captureID, playbackID, samplerate, &fDeviceID) != noErr)
                return -1;
        }

    // Capture only
    } else if (strcmp(capture_driver_uid, "") != 0) {
        jack_log("JackCoreAudioDriver::Open capture only");
        if (GetDeviceIDFromUID(capture_driver_uid, &fDeviceID) != noErr) {
            jack_log("Will take default input");
            if (GetDefaultInputDevice(&fDeviceID) != noErr) {
                jack_error("Cannot open default input device");
                return -1;
            }
        }
        if (GetDeviceNameFromID(fDeviceID, capture_driver_name) != noErr) {
            jack_error("Cannot get device name from device ID");
            return -1;
        }

    // Playback only
    } else if (strcmp(playback_driver_uid, "") != 0) {
        jack_log("JackCoreAudioDriver::Open playback only");
        if (GetDeviceIDFromUID(playback_driver_uid, &fDeviceID) != noErr) {
            jack_log("Will take default output");
            if (GetDefaultOutputDevice(&fDeviceID) != noErr) {
                jack_error("Cannot open default output device");
                return -1;
            }
        }
        if (GetDeviceNameFromID(fDeviceID, playback_driver_name) != noErr) {
            jack_error("Cannot get device name from device ID");
            return -1;
        }

    // Use default driver in duplex mode
    } else {
        jack_log("JackCoreAudioDriver::Open default driver");
        if (GetDefaultDevice(&fDeviceID) != noErr) {
            jack_error("Cannot open default device in duplex mode, so aggregate default input and default output");
            
            // Creates aggregate device
            AudioDeviceID captureID, playbackID;
            
            if (GetDeviceIDFromUID(capture_driver_uid, &captureID) != noErr) {
                jack_log("Will take default input");
                if (GetDefaultInputDevice(&captureID) != noErr) {
                    jack_error("Cannot open default input device");
                    return -1;
                }
            }
            
            if (GetDeviceIDFromUID(playback_driver_uid, &playbackID) != noErr) {
                jack_log("Will take default output");
                if (GetDefaultOutputDevice(&playbackID) != noErr) {
                    jack_error("Cannot open default output device");
                    return -1;
                }
            }
            
            if (CreateAggregateDevice(captureID, playbackID, samplerate, &fDeviceID) != noErr)
                return -1;
        }
    }
    
    if (fHogged) {
        if (TakeHog()) {
            jack_info("Device = %ld has been hogged", fDeviceID);
        }
    }

    return 0;
}

/*
Return the max possible input channels in in_nChannels and output channels in out_nChannels.
*/
int JackCoreAudioDriver::SetupChannels(bool capturing, bool playing, int& inchannels, int& outchannels, int& in_nChannels, int& out_nChannels, bool strict)
{
    OSStatus err = noErr;

    if (capturing) {
        err = GetTotalChannels(fDeviceID, in_nChannels, true);
        if (err != noErr) {
            jack_error("Cannot get input channel number");
            printError(err);
            return -1;
        } else {
            jack_log("Max input channels : %d", in_nChannels);
        }
    }

    if (playing) {
        err = GetTotalChannels(fDeviceID, out_nChannels, false);
        if (err != noErr) {
            jack_error("Cannot get output channel number");
            printError(err);
            return -1;
        } else {
            jack_log("Max output channels : %d", out_nChannels);
        }
    }

    if (inchannels > in_nChannels) {
        jack_error("This device hasn't required input channels inchannels = %d in_nChannels = %d", inchannels, in_nChannels);
        if (strict)
            return -1;
    }

    if (outchannels > out_nChannels) {
        jack_error("This device hasn't required output channels outchannels = %d out_nChannels = %d", outchannels, out_nChannels);
        if (strict)
            return -1;
    }

    if (inchannels == -1) {
        jack_log("Setup max in channels = %d", in_nChannels);
        inchannels = in_nChannels;
    }

    if (outchannels == -1) {
        jack_log("Setup max out channels = %d", out_nChannels);
        outchannels = out_nChannels;
    }

    return 0;
}

int JackCoreAudioDriver::SetupBufferSize(jack_nframes_t buffer_size)
{
    // Setting buffer size
    UInt32 outSize = sizeof(UInt32);
    OSStatus err = AudioDeviceSetProperty(fDeviceID, NULL, 0, false, kAudioDevicePropertyBufferFrameSize, outSize, &buffer_size);
    if (err != noErr) {
        jack_error("Cannot set buffer size %ld", buffer_size);
        printError(err);
        return -1;
    }

    return 0;
}

int JackCoreAudioDriver::SetupSampleRate(jack_nframes_t samplerate)
{
    return SetupSampleRateAux(fDeviceID, samplerate);
}

int JackCoreAudioDriver::SetupSampleRateAux(AudioDeviceID inDevice, jack_nframes_t samplerate)
{
    OSStatus err = noErr;
    UInt32 outSize;
    Float64 sampleRate;

    // Get sample rate
    outSize =  sizeof(Float64);
    err = AudioDeviceGetProperty(inDevice, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, &outSize, &sampleRate);
    if (err != noErr) {
        jack_error("Cannot get current sample rate");
        printError(err);
        return -1;
    } else {
        jack_log("Current sample rate = %f", sampleRate);
    }

    // If needed, set new sample rate
    if (samplerate != (jack_nframes_t)sampleRate) {
        sampleRate = (Float64)samplerate;

        // To get SR change notification
        err = AudioDeviceAddPropertyListener(inDevice, 0, true, kAudioDevicePropertyNominalSampleRate, SRNotificationCallback, this);
        if (err != noErr) {
            jack_error("Error calling AudioDeviceAddPropertyListener with kAudioDevicePropertyNominalSampleRate");
            printError(err);
            return -1;
        }
        err = AudioDeviceSetProperty(inDevice, NULL, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, outSize, &sampleRate);
        if (err != noErr) {
            jack_error("Cannot set sample rate = %ld", samplerate);
            printError(err);
            return -1;
        }

        // Waiting for SR change notification
        int count = 0;
        while (!fState && count++ < WAIT_COUNTER) {
            usleep(100000);
            jack_log("Wait count = %d", count);
        }
        
        // Check new sample rate
        outSize =  sizeof(Float64);
        err = AudioDeviceGetProperty(inDevice, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyNominalSampleRate, &outSize, &sampleRate);
        if (err != noErr) {
            jack_error("Cannot get current sample rate");
            printError(err);
        } else {
            jack_log("Checked sample rate = %f", sampleRate);
        }

        // Remove SR change notification
        AudioDeviceRemovePropertyListener(inDevice, 0, true, kAudioDevicePropertyNominalSampleRate, SRNotificationCallback);
    }

    return 0;
}

int JackCoreAudioDriver::OpenAUHAL(bool capturing,
                                   bool playing,
                                   int inchannels,
                                   int outchannels,
                                   int in_nChannels,
                                   int out_nChannels,
                                   jack_nframes_t buffer_size,
                                   jack_nframes_t samplerate)
{
    ComponentResult err1;
    UInt32 enableIO;
    AudioStreamBasicDescription srcFormat, dstFormat;
    AudioDeviceID currAudioDeviceID;
    UInt32 size;

    jack_log("OpenAUHAL capturing = %d playing = %d inchannels = %d outchannels = %d in_nChannels = %d out_nChannels = %d", capturing, playing, inchannels, outchannels, in_nChannels, out_nChannels);

    if (inchannels == 0 && outchannels == 0) {
        jack_error("No input and output channels...");
        return -1;
    }
         
    // AUHAL
    ComponentDescription cd = {kAudioUnitType_Output, kAudioUnitSubType_HALOutput, kAudioUnitManufacturer_Apple, 0, 0};
    Component HALOutput = FindNextComponent(NULL, &cd);

    err1 = OpenAComponent(HALOutput, &fAUHAL);
    if (err1 != noErr) {
        jack_error("Error calling OpenAComponent");
        printError(err1);
        goto error;
    }

    err1 = AudioUnitInitialize(fAUHAL);
    if (err1 != noErr) {
        jack_error("Cannot initialize AUHAL unit");
        printError(err1);
        goto error;
    }

    // Start I/O
    if (capturing && inchannels > 0) {
        enableIO = 1;
        jack_log("Setup AUHAL input on");
    } else {
        enableIO = 0;
        jack_log("Setup AUHAL input off");
    }
    
    err1 = AudioUnitSetProperty(fAUHAL, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, 1, &enableIO, sizeof(enableIO));
    if (err1 != noErr) {
        jack_error("Error calling AudioUnitSetProperty - kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input");
        printError(err1);
        goto error;
    }

    if (playing && outchannels > 0) {
        enableIO = 1;
        jack_log("Setup AUHAL output on");
    } else {
        enableIO = 0;
        jack_log("Setup AUHAL output off");
    }
    
    err1 = AudioUnitSetProperty(fAUHAL, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, 0, &enableIO, sizeof(enableIO));
    if (err1 != noErr) {
        jack_error("Error calling AudioUnitSetProperty - kAudioOutputUnitProperty_EnableIO,kAudioUnitScope_Output");
        printError(err1);
        goto error;
    }
    
    size = sizeof(AudioDeviceID);
    err1 = AudioUnitGetProperty(fAUHAL, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &currAudioDeviceID, &size);
    if (err1 != noErr) {
        jack_error("Error calling AudioUnitGetProperty - kAudioOutputUnitProperty_CurrentDevice");
        printError(err1);
        goto error;
    } else {
        jack_log("AudioUnitGetPropertyCurrentDevice = %d", currAudioDeviceID);
    }

    // Setup up choosen device, in both input and output cases
    err1 = AudioUnitSetProperty(fAUHAL, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, 0, &fDeviceID, sizeof(AudioDeviceID));
    if (err1 != noErr) {
        jack_error("Error calling AudioUnitSetProperty - kAudioOutputUnitProperty_CurrentDevice");
        printError(err1);
        goto error;
    }
  
    // Set buffer size
    if (capturing && inchannels > 0) {
        err1 = AudioUnitSetProperty(fAUHAL, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 1, (UInt32*)&buffer_size, sizeof(UInt32));
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioUnitProperty_MaximumFramesPerSlice");
            printError(err1);
            goto error;
        }
    }

    if (playing && outchannels > 0) {
        err1 = AudioUnitSetProperty(fAUHAL, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, (UInt32*)&buffer_size, sizeof(UInt32));
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioUnitProperty_MaximumFramesPerSlice");
            printError(err1);
            goto error;
        }
    }

    // Setup channel map
    if (capturing && inchannels > 0 && inchannels < in_nChannels) {
        SInt32 chanArr[in_nChannels];
        for (int i = 0; i < in_nChannels; i++) {
            chanArr[i] = -1;
        }
        for (int i = 0; i < inchannels; i++) {
            chanArr[i] = i;
        }
        AudioUnitSetProperty(fAUHAL, kAudioOutputUnitProperty_ChannelMap , kAudioUnitScope_Input, 1, chanArr, sizeof(SInt32) * in_nChannels);
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioOutputUnitProperty_ChannelMap 1");
            printError(err1);
            goto error;
        }
    }

    if (playing && outchannels > 0 && outchannels < out_nChannels) {
        SInt32 chanArr[out_nChannels];
        for (int i = 0; i < out_nChannels; i++) {
            chanArr[i] = -1;
        }
        for (int i = 0; i < outchannels; i++) {
            chanArr[i] = i;
        }
        err1 = AudioUnitSetProperty(fAUHAL, kAudioOutputUnitProperty_ChannelMap, kAudioUnitScope_Output, 0, chanArr, sizeof(SInt32) * out_nChannels);
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioOutputUnitProperty_ChannelMap 0");
            printError(err1);
            goto error;
        }
    }

    // Setup stream converters
    if (capturing && inchannels > 0) {
    
        size = sizeof(AudioStreamBasicDescription);
        err1 = AudioUnitGetProperty(fAUHAL, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, &srcFormat, &size);
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitGetProperty - kAudioUnitProperty_StreamFormat kAudioUnitScope_Output");
            printError(err1);
            goto error;
        }
        PrintStreamDesc(&srcFormat);
              
        jack_log("Setup AUHAL input stream converter SR = %ld", samplerate);
        srcFormat.mSampleRate = samplerate;
        srcFormat.mFormatID = kAudioFormatLinearPCM;
        srcFormat.mFormatFlags = kAudioFormatFlagsNativeFloatPacked | kLinearPCMFormatFlagIsNonInterleaved;
        srcFormat.mBytesPerPacket = sizeof(float);
        srcFormat.mFramesPerPacket = 1;
        srcFormat.mBytesPerFrame = sizeof(float);
        srcFormat.mChannelsPerFrame = inchannels;
        srcFormat.mBitsPerChannel = 32;
        PrintStreamDesc(&srcFormat);
      
        err1 = AudioUnitSetProperty(fAUHAL, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, 1, &srcFormat, sizeof(AudioStreamBasicDescription));
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioUnitProperty_StreamFormat kAudioUnitScope_Output");
            printError(err1);
            goto error;
        }
    }

    if (playing && outchannels > 0) {
    
        size = sizeof(AudioStreamBasicDescription);
        err1 = AudioUnitGetProperty(fAUHAL, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &dstFormat, &size);
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitGetProperty - kAudioUnitProperty_StreamFormat kAudioUnitScope_Input");
            printError(err1);
            goto error;
        }
        PrintStreamDesc(&dstFormat);
         
        jack_log("Setup AUHAL output stream converter SR = %ld", samplerate);
        dstFormat.mSampleRate = samplerate;
        dstFormat.mFormatID = kAudioFormatLinearPCM;
        dstFormat.mFormatFlags = kAudioFormatFlagsNativeFloatPacked | kLinearPCMFormatFlagIsNonInterleaved;
        dstFormat.mBytesPerPacket = sizeof(float);
        dstFormat.mFramesPerPacket = 1;
        dstFormat.mBytesPerFrame = sizeof(float);
        dstFormat.mChannelsPerFrame = outchannels;
        dstFormat.mBitsPerChannel = 32;
        PrintStreamDesc(&dstFormat);
       
        err1 = AudioUnitSetProperty(fAUHAL, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, 0, &dstFormat, sizeof(AudioStreamBasicDescription));
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioUnitProperty_StreamFormat kAudioUnitScope_Input");
            printError(err1);
            goto error;
        }
    }

    // Setup callbacks
    if (inchannels > 0 && outchannels == 0) {
        AURenderCallbackStruct output;
        output.inputProc = Render;
        output.inputProcRefCon = this;
        err1 = AudioUnitSetProperty(fAUHAL, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, 0, &output, sizeof(output));
        if (err1 != noErr) {
            jack_error("Error calling  AudioUnitSetProperty - kAudioUnitProperty_SetRenderCallback 1");
            printError(err1);
            goto error;
        }
    } else {
        AURenderCallbackStruct output;
        output.inputProc = Render;
        output.inputProcRefCon = this;
        err1 = AudioUnitSetProperty(fAUHAL, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Input, 0, &output, sizeof(output));
        if (err1 != noErr) {
            jack_error("Error calling AudioUnitSetProperty - kAudioUnitProperty_SetRenderCallback 0");
            printError(err1);
            goto error;
        }
    }

    return 0;
    
error:
    CloseAUHAL();
    return -1;
}

int JackCoreAudioDriver::SetupBuffers(int inchannels)
{
    // Prepare buffers
    fJackInputData = (AudioBufferList*)malloc(sizeof(UInt32) + inchannels * sizeof(AudioBuffer));
    fJackInputData->mNumberBuffers = inchannels;
    for (int i = 0; i < inchannels; i++) {
        fJackInputData->mBuffers[i].mNumberChannels = 1;
        fJackInputData->mBuffers[i].mDataByteSize = fEngineControl->fBufferSize * sizeof(float);
    }
    return 0;
}

void JackCoreAudioDriver::DisposeBuffers()
{
    if (fJackInputData) {
        free(fJackInputData);
        fJackInputData = 0;
    }
}

void JackCoreAudioDriver::CloseAUHAL()
{
    AudioUnitUninitialize(fAUHAL);
    CloseComponent(fAUHAL);
}

int JackCoreAudioDriver::AddListeners()
{
    OSStatus err = noErr;

    // Add listeners
    err = AudioDeviceAddPropertyListener(fDeviceID, 0, true, kAudioDeviceProcessorOverload, DeviceNotificationCallback, this);
    if (err != noErr) {
        jack_error("Error calling AudioDeviceAddPropertyListener with kAudioDeviceProcessorOverload");
        printError(err);
        return -1;
    }

    err = AudioDeviceAddPropertyListener(fDeviceID, 0, true, kAudioHardwarePropertyDevices, DeviceNotificationCallback, this);
    if (err != noErr) {
        jack_error("Error calling AudioDeviceAddPropertyListener with kAudioHardwarePropertyDevices");
        printError(err);
        return -1;
    }

    err = AudioDeviceAddPropertyListener(fDeviceID, 0, true, kAudioDevicePropertyNominalSampleRate, DeviceNotificationCallback, this);
    if (err != noErr) {
        jack_error("Error calling AudioDeviceAddPropertyListener with kAudioDevicePropertyNominalSampleRate");
        printError(err);
        return -1;
    }

    err = AudioDeviceAddPropertyListener(fDeviceID, 0, true, kAudioDevicePropertyDeviceIsRunning, DeviceNotificationCallback, this);
    if (err != noErr) {
        jack_error("Error calling AudioDeviceAddPropertyListener with kAudioDevicePropertyDeviceIsRunning");
        printError(err);
        return -1;
    }

    err = AudioDeviceAddPropertyListener(fDeviceID, 0, true, kAudioDevicePropertyStreamConfiguration, DeviceNotificationCallback, this);
    if (err != noErr) {
        jack_error("Error calling AudioDeviceAddPropertyListener with kAudioDevicePropertyStreamConfiguration");
        printError(err);
        return -1;
    }

    err = AudioDeviceAddPropertyListener(fDeviceID, 0, false, kAudioDevicePropertyStreamConfiguration, DeviceNotificationCallback, this);
    if (err != noErr) {
        jack_error("Error calling AudioDeviceAddPropertyListener with kAudioDevicePropertyStreamConfiguration");
        printError(err);
        return -1;
    }

    if (!fEngineControl->fSyncMode && fIOUsage != 1.f) {
        UInt32 outSize = sizeof(float);
        err = AudioDeviceSetProperty(fDeviceID, NULL, 0, false, kAudioDevicePropertyIOCycleUsage, outSize, &fIOUsage);
        if (err != noErr) {
            jack_error("Error calling AudioDeviceSetProperty kAudioDevicePropertyIOCycleUsage");
            printError(err);
        }
    }

    return 0;
}

void JackCoreAudioDriver::RemoveListeners()
{
    AudioDeviceRemovePropertyListener(fDeviceID, 0, true, kAudioDeviceProcessorOverload, DeviceNotificationCallback);
    AudioDeviceRemovePropertyListener(fDeviceID, 0, true, kAudioHardwarePropertyDevices, DeviceNotificationCallback);
    AudioDeviceRemovePropertyListener(fDeviceID, 0, true, kAudioDevicePropertyNominalSampleRate, DeviceNotificationCallback);
    AudioDeviceRemovePropertyListener(fDeviceID, 0, true, kAudioDevicePropertyDeviceIsRunning, DeviceNotificationCallback);
    AudioDeviceRemovePropertyListener(fDeviceID, 0, true, kAudioDevicePropertyStreamConfiguration, DeviceNotificationCallback);
    AudioDeviceRemovePropertyListener(fDeviceID, 0, false, kAudioDevicePropertyStreamConfiguration, DeviceNotificationCallback);
}

int JackCoreAudioDriver::Open(jack_nframes_t buffer_size,
                              jack_nframes_t samplerate,
                              bool capturing,
                              bool playing,
                              int inchannels,
                              int outchannels,
                              bool monitor,
                              const char* capture_driver_uid,
                              const char* playback_driver_uid,
                              jack_nframes_t capture_latency,
                              jack_nframes_t playback_latency,
                              int async_output_latency,
                              int computation_grain,
                              bool hogged,
                              bool clock_drift)
{
    int in_nChannels = 0;
    int out_nChannels = 0;
    char capture_driver_name[256];
    char playback_driver_name[256];

    // Keep initial state
    strcpy(fCaptureUID, capture_driver_uid);
    strcpy(fPlaybackUID, playback_driver_uid);
    fCaptureLatency = capture_latency;
    fPlaybackLatency = playback_latency;
    fIOUsage = float(async_output_latency) / 100.f;
    fComputationGrain = float(computation_grain) / 100.f;
    fHogged = hogged;
    fClockDriftCompensate = clock_drift;
    
    SInt32 major;
    SInt32 minor;
    Gestalt(gestaltSystemVersionMajor, &major);
    Gestalt(gestaltSystemVersionMinor, &minor);
    
    // Starting with 10.6 systems, the HAL notification thread is created internally
    if (major == 10 && minor >= 6) {
        CFRunLoopRef theRunLoop = NULL;
        AudioObjectPropertyAddress theAddress = { kAudioHardwarePropertyRunLoop, kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyElementMaster };
        OSStatus osErr = AudioObjectSetPropertyData (kAudioObjectSystemObject, &theAddress, 0, NULL, sizeof(CFRunLoopRef), &theRunLoop);
        if (osErr != noErr) {
            jack_error("JackCoreAudioDriver::Open kAudioHardwarePropertyRunLoop error");
            printError(osErr);
        }
    }

    if (SetupDevices(capture_driver_uid, playback_driver_uid, capture_driver_name, playback_driver_name, samplerate) < 0)
        goto error;

    // Generic JackAudioDriver Open
    if (JackAudioDriver::Open(buffer_size, samplerate, capturing, playing, inchannels, outchannels, monitor, capture_driver_name, playback_driver_name, capture_latency, playback_latency) != 0)
        goto error;

    if (SetupChannels(capturing, playing, inchannels, outchannels, in_nChannels, out_nChannels, true) < 0)
        goto error;

    if (SetupBufferSize(buffer_size) < 0)
        goto error;
        
    if (SetupSampleRate(samplerate) < 0)
        goto error;
 
    if (OpenAUHAL(capturing, playing, inchannels, outchannels, in_nChannels, out_nChannels, buffer_size, samplerate) < 0)
        goto error;

    if (capturing && inchannels > 0)
        if (SetupBuffers(inchannels) < 0)
            goto error;

    if (AddListeners() < 0)
        goto error;
  
    // Core driver may have changed the in/out values
    fCaptureChannels = inchannels;
    fPlaybackChannels = outchannels;
    return noErr;

error:
    Close();
    return -1;
}

int JackCoreAudioDriver::Close()
{
    jack_log("JackCoreAudioDriver::Close");
    Stop();
    JackAudioDriver::Close();
    RemoveListeners();
    DisposeBuffers();
    CloseAUHAL();
    DestroyAggregateDevice();
    return 0;
}

int JackCoreAudioDriver::Attach()
{
    OSStatus err;
    JackPort* port;
    jack_port_id_t port_index;
    UInt32 size;
    Boolean isWritable;
    char channel_name[64];
    char name[JACK_CLIENT_NAME_SIZE + JACK_PORT_NAME_SIZE];
    char alias[JACK_CLIENT_NAME_SIZE + JACK_PORT_NAME_SIZE];
 
    jack_log("JackCoreAudioDriver::Attach fBufferSize %ld fSampleRate %ld", fEngineControl->fBufferSize, fEngineControl->fSampleRate);

    for (int i = 0; i < fCaptureChannels; i++) {

        err = AudioDeviceGetPropertyInfo(fDeviceID, i + 1, true, kAudioDevicePropertyChannelName, &size, &isWritable);
        if (err != noErr)
            jack_log("AudioDeviceGetPropertyInfo kAudioDevicePropertyChannelName error ");
        if (err == noErr && size > 0) {
            err = AudioDeviceGetProperty(fDeviceID, i + 1, true, kAudioDevicePropertyChannelName, &size, channel_name);
            if (err != noErr)
                jack_log("AudioDeviceGetProperty kAudioDevicePropertyChannelName error ");
            snprintf(alias, sizeof(alias) - 1, "%s:%s:out_%s%u", fAliasName, fCaptureDriverName, channel_name, i + 1);
        } else {
            snprintf(alias, sizeof(alias) - 1, "%s:%s:out%u", fAliasName, fCaptureDriverName, i + 1);
        }

        snprintf(name, sizeof(name) - 1, "%s:capture_%d", fClientControl.fName, i + 1);

        if ((port_index = fGraphManager->AllocatePort(fClientControl.fRefNum, name, JACK_DEFAULT_AUDIO_TYPE, CaptureDriverFlags, fEngineControl->fBufferSize)) == NO_PORT) {
            jack_error("Cannot register port for %s", name);
            return -1;
        }

        size = sizeof(UInt32);
        UInt32 value1 = 0;
        UInt32 value2 = 0;
        err = AudioDeviceGetProperty(fDeviceID, 0, true, kAudioDevicePropertyLatency, &size, &value1);
        if (err != noErr)
            jack_log("AudioDeviceGetProperty kAudioDevicePropertyLatency error ");
        err = AudioDeviceGetProperty(fDeviceID, 0, true, kAudioDevicePropertySafetyOffset, &size, &value2);
        if (err != noErr)
            jack_log("AudioDeviceGetProperty kAudioDevicePropertySafetyOffset error ");

        port = fGraphManager->GetPort(port_index);
        port->SetAlias(alias);
        port->SetLatency(fEngineControl->fBufferSize + value1 + value2 + fCaptureLatency);
        fCapturePortList[i] = port_index;
    }

    for (int i = 0; i < fPlaybackChannels; i++) {

        err = AudioDeviceGetPropertyInfo(fDeviceID, i + 1, false, kAudioDevicePropertyChannelName, &size, &isWritable);
        if (err != noErr)
            jack_log("AudioDeviceGetPropertyInfo kAudioDevicePropertyChannelName error ");
        if (err == noErr && size > 0) {
            err = AudioDeviceGetProperty(fDeviceID, i + 1, false, kAudioDevicePropertyChannelName, &size, channel_name);
            if (err != noErr)
                jack_log("AudioDeviceGetProperty kAudioDevicePropertyChannelName error ");
            snprintf(alias, sizeof(alias) - 1, "%s:%s:in_%s%u", fAliasName, fPlaybackDriverName, channel_name, i + 1);
        } else {
            snprintf(alias, sizeof(alias) - 1, "%s:%s:in%u", fAliasName, fPlaybackDriverName, i + 1);
        }

        snprintf(name, sizeof(name) - 1, "%s:playback_%d", fClientControl.fName, i + 1);

        if ((port_index = fGraphManager->AllocatePort(fClientControl.fRefNum, name, JACK_DEFAULT_AUDIO_TYPE, PlaybackDriverFlags, fEngineControl->fBufferSize)) == NO_PORT) {
            jack_error("Cannot register port for %s", name);
            return -1;
        }

        size = sizeof(UInt32);
        UInt32 value1 = 0;
        UInt32 value2 = 0;
        err = AudioDeviceGetProperty(fDeviceID, 0, false, kAudioDevicePropertyLatency, &size, &value1);
        if (err != noErr)
            jack_log("AudioDeviceGetProperty kAudioDevicePropertyLatency error ");
        err = AudioDeviceGetProperty(fDeviceID, 0, false, kAudioDevicePropertySafetyOffset, &size, &value2);
        if (err != noErr)
            jack_log("AudioDeviceGetProperty kAudioDevicePropertySafetyOffset error ");

        port = fGraphManager->GetPort(port_index);
        port->SetAlias(alias);
        // Add more latency if "async" mode is used...
        port->SetLatency(fEngineControl->fBufferSize + ((fEngineControl->fSyncMode) ? 0 : fEngineControl->fBufferSize * fIOUsage) + value1 + value2 + fPlaybackLatency);
        fPlaybackPortList[i] = port_index;

        // Monitor ports
        if (fWithMonitorPorts) {
            jack_log("Create monitor port ");
            snprintf(name, sizeof(name) - 1, "%s:monitor_%u", fClientControl.fName, i + 1);
            if ((port_index = fGraphManager->AllocatePort(fClientControl.fRefNum, name, JACK_DEFAULT_AUDIO_TYPE, MonitorDriverFlags, fEngineControl->fBufferSize)) == NO_PORT) {
                jack_error("Cannot register monitor port for %s", name);
                return -1;
            } else {
                port = fGraphManager->GetPort(port_index);
                port->SetAlias(alias);
                port->SetLatency(fEngineControl->fBufferSize);
                fMonitorPortList[i] = port_index;
            }
        }
    }

    // Input buffers do no change : prepare them only once
    for (int i = 0; i < fCaptureChannels; i++) {
        fJackInputData->mBuffers[i].mData = GetInputBuffer(i);
    }

    return 0;
}

int JackCoreAudioDriver::Start()
{
    jack_log("JackCoreAudioDriver::Start");
    JackAudioDriver::Start();

    OSStatus err = AudioOutputUnitStart(fAUHAL);
    if (err != noErr)
        return -1;
    
    // Waiting for Measure callback to be called (= driver has started)
    fState = false;
    int count = 0;
    while (!fState && count++ < WAIT_COUNTER) {
        usleep(100000);
        jack_log("JackCoreAudioDriver::Start wait count = %d", count);
    }
    
    if (count < WAIT_COUNTER) {
        jack_info("CoreAudio driver is running...");
        return 0;
    } else {
        jack_error("CoreAudio driver cannot start...");
        return -1;
    }
}

int JackCoreAudioDriver::Stop()
{
    jack_log("JackCoreAudioDriver::Stop");
    return (AudioOutputUnitStop(fAUHAL) == noErr) ? 0 : -1;
}

int JackCoreAudioDriver::SetBufferSize(jack_nframes_t buffer_size)
{
    OSStatus err;
    UInt32 outSize = sizeof(UInt32);

    err = AudioDeviceSetProperty(fDeviceID, NULL, 0, false, kAudioDevicePropertyBufferFrameSize, outSize, &buffer_size);
    if (err != noErr) {
        jack_error("Cannot set buffer size %ld", buffer_size);
        printError(err);
        return -1;
    }

    JackAudioDriver::SetBufferSize(buffer_size); // never fails

    // Input buffers do no change : prepare them only once
    for (int i = 0; i < fCaptureChannels; i++) {
        fJackInputData->mBuffers[i].mNumberChannels = 1;
        fJackInputData->mBuffers[i].mDataByteSize = fEngineControl->fBufferSize * sizeof(float);
        fJackInputData->mBuffers[i].mData = GetInputBuffer(i);
    }

    return 0;
}

bool JackCoreAudioDriver::TakeHogAux(AudioDeviceID deviceID, bool isInput)
{
    pid_t hog_pid;
    OSStatus err;

    UInt32 propSize = sizeof(hog_pid);
    err = AudioDeviceGetProperty(deviceID, 0, isInput, kAudioDevicePropertyHogMode, &propSize, &hog_pid);
    if (err) {
        jack_error("Cannot read hog state...");
        printError(err);
    }

    if (hog_pid != getpid()) {
        hog_pid = getpid();
        err = AudioDeviceSetProperty(deviceID, 0, 0, isInput, kAudioDevicePropertyHogMode, propSize, &hog_pid);
        if (err != noErr) {
            jack_error("Can't hog device = %d because it's being hogged by another program or cannot be hogged", deviceID);
            return false;
        }
    }
    
    return true;
}
    
bool JackCoreAudioDriver::TakeHog()
{
    OSStatus err = noErr;
    AudioObjectID sub_device[32];
    UInt32 outSize = sizeof(sub_device);
    err = AudioDeviceGetProperty(fDeviceID, 0, kAudioDeviceSectionGlobal, kAudioAggregateDevicePropertyActiveSubDeviceList, &outSize, sub_device);
    
    if (err != noErr) {
        jack_log("Device does not have subdevices");
        return TakeHogAux(fDeviceID, true);
    } else {
        int num_devices = outSize / sizeof(AudioObjectID);
        jack_log("Device does has %d subdevices", num_devices);
        for (int i = 0; i < num_devices; i++) {
            if (!TakeHogAux(sub_device[i], true)) {
                return false;
            }
        }
        return true;
    }
}
    
bool JackCoreAudioDriver::IsAggregateDevice(AudioDeviceID device)
{
    UInt32 deviceType, outSize = sizeof(UInt32);
    OSStatus err = AudioDeviceGetProperty(device, 0, kAudioDeviceSectionGlobal, kAudioDevicePropertyTransportType, &outSize, &deviceType);
    
    if (err != noErr) {
        jack_log("JackCoreAudioDriver::IsAggregateDevice kAudioDevicePropertyTransportType error");
        return false;
    } else {
        return (deviceType == kAudioDeviceTransportTypeAggregate);
    }
}


} // end of namespace


#ifdef __cplusplus
extern "C"
{
#endif

    SERVER_EXPORT jack_driver_desc_t* driver_get_descriptor() 
    {
        jack_driver_desc_t *desc;
        unsigned int i;
        desc = (jack_driver_desc_t*)calloc(1, sizeof(jack_driver_desc_t));

        strcpy(desc->name, "coreaudio");                                    // size MUST be less then JACK_DRIVER_NAME_MAX + 1
        strcpy(desc->desc, "Apple CoreAudio API based audio backend");      // size MUST be less then JACK_DRIVER_PARAM_DESC + 1
        
        desc->nparams = 17;
        desc->params = (jack_driver_param_desc_t*)calloc(desc->nparams, sizeof(jack_driver_param_desc_t));

        i = 0;
        strcpy(desc->params[i].name, "channels");
        desc->params[i].character = 'c';
        desc->params[i].type = JackDriverParamInt;
        desc->params[i].value.ui = -1;
        strcpy(desc->params[i].short_desc, "Maximum number of channels");
        strcpy(desc->params[i].long_desc, "Maximum number of channels. If -1, max possible number of channels will be used");

        i++;
        strcpy(desc->params[i].name, "inchannels");
        desc->params[i].character = 'i';
        desc->params[i].type = JackDriverParamInt;
        desc->params[i].value.ui = -1;
        strcpy(desc->params[i].short_desc, "Maximum number of input channels");
        strcpy(desc->params[i].long_desc, "Maximum number of input channels. If -1, max possible number of input channels will be used");

        i++;
        strcpy(desc->params[i].name, "outchannels");
        desc->params[i].character = 'o';
        desc->params[i].type = JackDriverParamInt;
        desc->params[i].value.ui = -1;
        strcpy(desc->params[i].short_desc, "Maximum number of output channels");
        strcpy(desc->params[i].long_desc, "Maximum number of output channels. If -1, max possible number of output channels will be used");

        i++;
        strcpy(desc->params[i].name, "capture");
        desc->params[i].character = 'C';
        desc->params[i].type = JackDriverParamString;
        strcpy(desc->params[i].short_desc, "Input CoreAudio device name");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "playback");
        desc->params[i].character = 'P';
        desc->params[i].type = JackDriverParamString;
        strcpy(desc->params[i].short_desc, "Output CoreAudio device name");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy (desc->params[i].name, "monitor");
        desc->params[i].character = 'm';
        desc->params[i].type = JackDriverParamBool;
        desc->params[i].value.i = 0;
        strcpy(desc->params[i].short_desc, "Provide monitor ports for the output");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "duplex");
        desc->params[i].character = 'D';
        desc->params[i].type = JackDriverParamBool;
        desc->params[i].value.i = TRUE;
        strcpy(desc->params[i].short_desc, "Provide both capture and playback ports");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "rate");
        desc->params[i].character = 'r';
        desc->params[i].type = JackDriverParamUInt;
        desc->params[i].value.ui = 44100U;
        strcpy(desc->params[i].short_desc, "Sample rate");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "period");
        desc->params[i].character = 'p';
        desc->params[i].type = JackDriverParamUInt;
        desc->params[i].value.ui = 128U;
        strcpy(desc->params[i].short_desc, "Frames per period");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "device");
        desc->params[i].character = 'd';
        desc->params[i].type = JackDriverParamString;
        strcpy(desc->params[i].short_desc, "CoreAudio device name");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "input-latency");
        desc->params[i].character = 'I';
        desc->params[i].type = JackDriverParamUInt;
        desc->params[i].value.i = 0;
        strcpy(desc->params[i].short_desc, "Extra input latency (frames)");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "output-latency");
        desc->params[i].character = 'O';
        desc->params[i].type = JackDriverParamUInt;
        desc->params[i].value.i = 0;
        strcpy(desc->params[i].short_desc, "Extra output latency (frames)");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);

        i++;
        strcpy(desc->params[i].name, "list-devices");
        desc->params[i].character = 'l';
        desc->params[i].type = JackDriverParamBool;
        desc->params[i].value.i = FALSE;
        strcpy(desc->params[i].short_desc, "Display available CoreAudio devices");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);
        
        i++;
        strcpy(desc->params[i].name, "hog");
        desc->params[i].character = 'H';
        desc->params[i].type = JackDriverParamBool;
        desc->params[i].value.i = FALSE;
        strcpy(desc->params[i].short_desc, "Take exclusive access of the audio device");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);
        
        i++;
        strcpy(desc->params[i].name, "async-latency");
        desc->params[i].character = 'L';
        desc->params[i].type = JackDriverParamUInt;
        desc->params[i].value.i = 100;
        strcpy(desc->params[i].short_desc, "Extra output latency in asynchronous mode (percent)");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);
        
        i++;
        strcpy(desc->params[i].name, "grain");
        desc->params[i].character = 'G';
        desc->params[i].type = JackDriverParamUInt;
        desc->params[i].value.i = 100;
        strcpy(desc->params[i].short_desc, "Computation grain in RT thread (percent)");
        strcpy(desc->params[i].long_desc, desc->params[i].short_desc);
        
        i++;
        strcpy(desc->params[i].name, "clock-drift");
        desc->params[i].character = 's';
        desc->params[i].type = JackDriverParamBool;
        desc->params[i].value.i = FALSE;
        strcpy(desc->params[i].short_desc, "Clock drift compensation");
        strcpy(desc->params[i].long_desc, "Whether to compensate clock drift in dynamically created aggregate device");

        return desc;
    }

    SERVER_EXPORT Jack::JackDriverClientInterface* driver_initialize(Jack::JackLockedEngine* engine, Jack::JackSynchro* table, const JSList* params) 
    {
        jack_nframes_t srate = 44100;
        jack_nframes_t frames_per_interrupt = 128;
        bool capture = false;
        bool playback = false;
        int chan_in = -1;   // Default: if not explicitely set, then max possible will be used...
        int chan_out = -1;  // Default: if not explicitely set, then max possible will be used...
        bool monitor = false;
        const char* capture_driver_uid = "";
        const char* playback_driver_uid = "";
        const JSList *node;
        const jack_driver_param_t *param;
        jack_nframes_t systemic_input_latency = 0;
        jack_nframes_t systemic_output_latency = 0;
        int async_output_latency = 100;
        int computation_grain = -1;
        bool hogged = false;
        bool clock_drift = false;
    
        for (node = params; node; node = jack_slist_next(node)) {
            param = (const jack_driver_param_t *) node->data;
       
            switch (param->character) {

                case 'd':
                    capture_driver_uid = param->value.str;
                    playback_driver_uid = param->value.str;
                    break;

                case 'D':
                    capture = true;
                    playback = true;
                    break;

                case 'c':
                    chan_in = chan_out = (int)param->value.ui;
                    break;

                case 'i':
                    chan_in = (int)param->value.ui;
                    break;

                case 'o':
                    chan_out = (int)param->value.ui;
                    break;

                case 'C':
                    capture = true;
                    if (strcmp(param->value.str, "none") != 0) {
                        capture_driver_uid = param->value.str;
                    }
                    break;

                case 'P':
                    playback = true;
                    if (strcmp(param->value.str, "none") != 0) {
                        playback_driver_uid = param->value.str;
                    }
                    break;

                case 'm':
                    monitor = param->value.i;
                    break;

                case 'r':
                    srate = param->value.ui;
                    break;

                case 'p':
                    frames_per_interrupt = (unsigned int)param->value.ui;
                    break;

                case 'I':
                    systemic_input_latency = param->value.ui;
                    break;

                case 'O':
                    systemic_output_latency = param->value.ui;
                    break;

                case 'l':
                    Jack::DisplayDeviceNames();
                    break;
                    
                case 'H':
                    hogged = true;
                    break;
                    
                case 'L':
                    async_output_latency = param->value.ui;
                    break;
                    
                case 'G':
                    computation_grain = param->value.ui;
                    break;
                    
                case 's':
                    clock_drift = true;
                    break;
            }
        }

        /* duplex is the default */
        if (!capture && !playback) {
            capture = true;
            playback = true;
        }

        Jack::JackCoreAudioDriver* driver = new Jack::JackCoreAudioDriver("system", "coreaudio", engine, table);
        if (driver->Open(frames_per_interrupt, srate, capture, playback, chan_in, chan_out, monitor, capture_driver_uid, 
            playback_driver_uid, systemic_input_latency, systemic_output_latency, async_output_latency, computation_grain, hogged, clock_drift) == 0) {
            return driver;
        } else {
            delete driver;
            return NULL;
        }
    }

#ifdef __cplusplus
}
#endif



Generated by  Doxygen 1.6.0   Back to index